dear all
im not sure the post shd go here but i expect we might get some interesting programs resulting so on that basis .. heres my Help request ...
im looking for a FOURIER FRIEND .. as i don't do Fourier [ i fancy its a bit like Floating Point Coke !!!]
i thought this might amuse you as it did me
here is the result of an analysis i ran on the number 7
it produced the numbers 7 22 37 46 51 53 54
here is 54 / 7**2 [54/49]
1.10204081632653061224489795918367346938775510204081632653061224489795918367346938775510204...
: 102040816326530612244897959183673469387755 : .........................
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; getting side tracked ; notice power of 2 build_up
.10204081632653061224489795918367346938775510204081....
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
1.1020408163265306122448
why powers of 2 per 100 : 49 = 100/2 - 1 prob
;;;;;;;;;;;;;;;;;;;;;;;;;; end of side track ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
: 102040816326530612244897959183673469387755 : .........................
you will prob have also noticed that the division repeats itself every 42 [7*6] digits in this case starting
this is because there is no other common factor in 54 [ 2 3 3 3 ] and 49 [ 7 7 ] and 1/7 has a sequence 6 digits long 142857 repeated
142857 has a subsequence .. which is reflexive around its mid point ie digits {1 :4 } 1+8 = 9 similarly{2,5} 4 + 5 = 9 and lastly{3,6} 7 + 2 = 9
.. a similar six digit repeating pattern can also be made by dividing 1 by 13 .. a seven digit one by dividing 1/239 or 1/4649
Now what im interested in is to see if theres any sub_patterning that im missing by my Old Cut up Back [ Of Threatening and Abusive ] Letters
Approach to this and i dont know enough about Fourier or feel confident enough to know how to approach this sort of Digital Signal Processing
and the matrix manipulation etc involved [ does Fast Fourier cheat and use powers of 2 ??? somehow]
[if possible i would like somebody to preferably send me the code to compile to make a Fourier machine and help with a load of hand holding advice
or write it for me to a specification .. or ... at least run the examples through here .. i calculated them to 4000 digits but it looks weird putting 4000 digit numbers up [ bad enough with the longer ones at the end ...but there should be no prob with Fourier windowing ???
except at ends .. but they shd prob be extended to a couple of multiples of the sequences ]
here are a few other divide by 49ers and then some natural numbers whose period is length 42 and lastly some division by primes
53 53/7**2 = 1.0816326530612244897959183673469387755102040816326530612244897959183673469387755102040816326530612244897959183673469387755102040816326
51 51/7**2 = 1.04081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632
51 51/127 = .4015748031496062992125984251968503937007874015748031496062992125984251968503937007874015748031496062992125984251968503937007874015748031496
53 53/127 = .4173228346456692913385826771653543307086614173228346456692913385826771653543307086614173228346456692913385826771653543307086614173228346456
61 related [60 sequence] 1/7061709990156159479 =
.00000000000000000014160876068175754265293767145130197783818810000000000000000001416087606817575426529376714513019778381881000000000000000000141608760681757542652937671451301977838188100000000000000000014160876068175754265293767145130197783818810000000000000000001416087606817575426529376714513019778381881000000000000000000
508 related 1/651871849785243820958119684233142982170536938147349501049955875423544371888519632103159753836519854149224951224466197
.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015340438467000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001534043846700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000153404384670000
508 related 1/36099531273603138218699301565567581705151216702113889
.0000000000000000000000000000000000000000000000000000277011907002577759809351546432595468773761912508656994814208603377753775008999999999999999999999999999999999999999999999999999972298809299742224019064845356740453122623808749134300518579139662224622499100000000000000000000000000000000000000000000000000002770119070025777598093515464325954687737619125086569948142086033777537750089999999999999999999999999999999999999999999999999999722988092997422240190648453567404531226238087491343005185791396622246224991
557 related 1/ 652065570931334169846518762110895357104035953330623783530923329412897765703841859492780362601926814638167836591846272150911969126521
.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015335880999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998466411900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000153358809999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984664119
557 related 1/ 9327281575040435942820030416618073853906181206383845973140973454310325710523151012873614569275960380714495413018734336834397
.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000107212373932826700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010721237393282670000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001072123739328267
646 related 1/ 87946415928437692466120948982620559202657683736102165146501778626343706150135447983693977813544625674393856438133847360929077123212993

.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001137056001024195815194290511343443143005491829797403110282872499864240721542199028198482013788729478306493143786348560286831829515442126300920690295896223002530727965266138037375581216950509954291219984328950313346778356708942819787839911117533016927759459302447351433651815763360801313594983368126355886555438297901738130801412298450517327488747635043231498919414396599756029980135274533364216951817843322816605095839339074151818309632342884552257877434578453443366296912212291805009422383125230282720768344941430000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000113705600102419581519429051134344314300549182979740311028287249986424072154219902819848201378872947830649314378634856028683182951544212630092069029589622300253072796526613803737558121695050995429121998432895031334677835670894281978783991111753301692775945930244735143365181576336080131359498336812635588655543829790173813080141229845051732748874763504323149891941439659975602998013527453336421695181784332281660509583933907415181830963234288455225787743457845344336629691221229180500942238312523028272076834494143
im interested in 508 because it looks like 509 1's [ie 111111111.. 509 times ] doesnt seem to factorise and i have a reason that links this to
the fact that 647 doesnt and the same idea links 19 and 23 but ive ABSOLUTELY no idea why !!
and thought fourier might help by looking at it
i also think that 557 1's may factorise but have yet to finish the program to test it and wondered if Fourier might show something [ any observations thankfully received
as you may have the answers i dont !! .. usually the way ]
regards mike b