News:

Masm32 SDK description, downloads and other helpful links
Message to All Guests
NB: Posting URL's See here: Posted URL Change

Main Menu

Neural ALU Implemented in x86 Assembly

Started by LiaoMi, November 10, 2019, 11:00:13 AM

Previous topic - Next topic

LiaoMi

Neural ALU Implemented in x86 Assembly, full article can be found here - https://rickyhan.com/jekyll/update/2018/08/15/neural-alu-implemented-in-python-and-assembly-x86.html

The recent Deepmind's Neural Arithmetic Logic Unit(NALU) is a very neat idea. It is a simple module that enables numeracy for neural nets. Contrary to popular belief, neural nets are not very good at arithmetic and counting(if at all). If you train an adder network between 0 and 10, it will do okay if you give it 3 + 5 but won't be able to extrapolate and will fail miserably for 1000 + 3000. Similarly, if the net is trained to count up to 10, it won't be able to count to 20. The NALU is able to track time, perform arithmetic, translate numerical language into scalars, execute computer code, and count objects in images.

The central idea behind Neural ALU is a differentiable function that outputs 0, -1 or 1, rendering the concept of addition and subtraction trainable. The beauty also lies in the simplicity of the formula: tanh(m) * sigmoid(w) made of fundamental building blocks. If you think about it: tanh is -1 or 1, sigmoid is 0 or 1 so the product of two would be one of 0, 1, -1.

Here is the plot of the function:





; Neural ALU implementation in x86_64
;
; nasm -felf64 nalu.s
; gcc -no-pie nalu.o -o nalu -g
;


%define USE_SUB 1
%define EPOCH 1_000_000

global main
extern printf

section .data
    first_fmt: db "first weight: %f, ", 0
    second_fmt: db "second weight: %f", 0xA, 0

    rand_seed: dd 1
    rand_max: dd -2147483648     ; -2^31

section .bss
    result: resq 2              ; reserve 2 floats
    PRN: resq 2

    w_hats: resq 2
    m_hats: resq 2

    xs: resd 2
    tanhs: resd 2
    sigms: resd 2

    tmp1: resq 2
    tmp2: resq 2

    weights: resq 1
    err: resq 2

section .text

main:

    mov ebx, EPOCH

.calc:
    cmp ebx, 0
    je .exit
    dec ebx

.init_rand:
    call rand
    fstp dword [xs]
    call rand
    fstp dword [xs+4]

.tanhs_and_sigmoids:
    ;; first calculate tanhs and put those in tanhs
    finit
    fld dword [m_hats]
    call tanh
    fstp dword [tanhs]
    finit
    fld dword [m_hats+4]
    call tanh
    fstp dword [tanhs+4]

    ;; calculate sigmoids
    finit
    fld dword [w_hats]
    call sigmoid
    fstp dword [sigms]
    finit
    fld dword [w_hats+4]
    call sigmoid
    fstp dword [sigms+4]

.forward_pass:
    movdqu xmm0, [tanhs]        ; move 128 bits
    movdqu xmm1, [sigms]
    movq xmm2, [xs]             ; move 64 bits

    mulps xmm0, xmm1            ; tanh * sigmoid

    movdqu [weights], xmm0

    mulps xmm0, xmm2            ; tanh * sigmoid * xs

    haddps xmm0, xmm0           ; y_hat
    haddps xmm0, xmm0           ; horizontal add (sum)

%if USE_SUB
    hsubps xmm2, xmm2           ; y = x0 - x1
    hsubps xmm2, xmm2
%else
    haddps xmm2, xmm2           ; y = x0 + x1
    haddps xmm2, xmm2
%endif


.calc_error:
    subps xmm0, xmm2            ; xmm0 <- y_hat - y
    extractps eax, xmm0, 1
    mov [err], eax

.backpropagate:

    finit
    ;; m[0] -= err * x0 * sigm0 * dtanh(m[0]);
    fld dword [m_hats]          ; dtanh(m0)
    call dtanh
    fld dword [xs]              ; x0
    fmul
    fld dword [err]             ; err
    fmul
    fld dword [sigms]           ; sigm0
    fmul
    fld dword [m_hats]          ; dtanh(m0)
    fsubr
    fstp dword [m_hats]

    finit
    ;; m[1] -= err * x1 * sigm1 * dtanh(m[1]);
    fld dword [m_hats+4]        ; dtanh(m1)
    call dtanh
    fld dword [xs+4]            ; x1
    fmul
    fld dword [err]             ; err
    fmul
    fld dword [sigms+4]         ; sigm1
    fmul
    fld dword [m_hats+4]        ; dtanh(m1)
    fsubr
    fstp dword [m_hats+4]

    finit
    ;; w[0] -= err * x0 * dsigmoid(w[0]) * tanh0;
    fld dword [w_hats]
    call dsigmoid
    fld dword [xs]
    fmul
    fld dword [err]
    fmul
    fld dword [tanhs]
    fmul
    fld dword [w_hats]
    fsubr
    fstp dword [w_hats]

    finit
    ;; w[1] -= err * x1 * dsigmoid(w[1]) * tanh1;
    fld dword [w_hats+4]
    call dsigmoid
    fld dword [xs+4]
    fmul
    fld dword [err]
    fmul
    fld dword [tanhs+4]
    fmul
    fld dword [w_hats+4]
    fsubr
    fstp dword [w_hats+4]

.print:
    sub rsp, 8                  ; reserve stack pointer
    movd xmm0, [weights]        ; pass result to printf via xmm0
    cvtps2pd xmm0, xmm0         ; convert float to double
    mov rdi, first_fmt          ; printf format string
    mov rax, 1                  ; number of varargs
    call printf                 ; call printf
    add rsp, 8                  ; add stack pointer back

    sub rsp, 8                  ; reserve stack pointer
    movd xmm0, [weights+4]      ; pass result to printf via xmm0
    cvtps2pd xmm0, xmm0         ; convert float to double
    mov rdi, second_fmt         ; printf format string
    mov rax, 1                  ; number of varargs
    call printf                 ; call printf
    add rsp, 8                  ; add stack pointer back

    jmp .calc

.exit:
    mov eax, 0x60
    xor edi, edi
    syscall

tanh:                           ; (exp(x) - exp(-1)) / (exp(x) + exp(-x))
    fst dword [tmp1]            ; tmp1 <- x
    call exp;                   ; exp(x)
    fst dword [tmp2]            ; tmp2 <- exp(x)
    fld dword [tmp1]
    fchs
    call exp
    fst dword [tmp1]            ; tmp1 <- exp(-x)
    fld dword [tmp2]
    fsubr
    fld dword [tmp2]            ; load exp(x) and exp(-x)
    fld dword [tmp1]
    fadd
    fdiv
    ret

dtanh:                          ; 1. - pow(tanh(x), 2.)
    call tanh
    fst dword [tmp1]            ; duplicate tanh on the stack
    fld dword [tmp1]
    fmul                        ; tanh(x) * tanh(x)
    fld1                        ; load 1
    fsubr                       ; 1 - tanh(x) ** 2
    ret

sigmoid:                        ; 1 / (1 + exp(-x))
    fchs                        ; -x
    call exp                    ; exp(-x)
    fld1                        ; load 1
    fadd
    fld1                        ; load 1
    fdivr                       ; 1 / ST(0)
    ret

dsigmoid:                       ; sigmoid(x) * (1. - sigmoid(x))
    call sigmoid
    fst dword [tmp1]            ; tmp <- sigmoid(x)
    fchs
    fld1
    fadd
    fld dword [tmp1]            ; st(0) <- sigmoid(x)
    fmul
    ret

exp:
    fldl2e
    fmulp st1,st0               ; st0 = x*log2(e) = tmp1
    fld1
    fscale                      ; st0 = 2^int(tmp1), st1=tmp1
    fxch
    fld1
    fxch                        ; st0 = tmp1, st1=1, st2=2^int(tmp1)
    fprem                       ; st0 = fract(tmp1) = tmp2
    f2xm1                       ; st0 = 2^(tmp2) - 1 = tmp3
    faddp st1,st0               ; st0 = tmp3+1, st1 = 2^int(tmp1)
    fmulp st1,st0               ; st0 = 2^int(tmp1) + 2^fract(tmp1) = 2^(x*log2(e))
    ret

rand:
    imul eax, dword [rand_seed], 16807 ; RandSeed *= 16807
    mov dword [rand_seed], eax
    fild dword [rand_seed]             ; load RandSeed as an integer
    fidiv dword [rand_max]             ; div by max int value (absolute) = eax / (-2^31)
    ret

K_F

Having looked at/read up on AI/neural networks for a number of years, I've come to a simple conclusion.

There are infinite ways to implement AI, which one is best on average is currently hard to determine and requires a lot of 'playtime' to mould into the particular application.

AI to date will be application specific but always prone to stuffing it up big time, so when I see a lot of hype how wonderful AI is I  :rofl:

Similar to psychology or HR department trying to 'pigeon hole' you with stupid tests...
The Brain has approx 100 billion neurons, each with up to hundreds of interconnections... and there are 7 billion people in the world.
Each one of these brains/people are different, and you want to pigeon hole them... :rofl: :rofl: :rolleyes:

But it's fun playing with the 'brain'.  :biggrin:
'Sire, Sire!... the peasants are Revolting !!!'
'Yes, they are.. aren't they....'

hutch--


Siekmanski

And keep your fingers crossed for AI algorithms that prefer feelings to facts, otherwise we have to program safe space allocations in them..  :biggrin:
Creative coders use backward thinking techniques as a strategy.

daydreamer

I seen documentary on tv,one teenager makes mars robot with simple AI for a contest,the AI is trained to navigate in the terrain,maybe easier than train numbers and maybe need several AI circuits to handle 1,20,100,3000 ,millions put together to a more complex  number to speak out?and its more AI in insect does,it navigates a terrain to flower and back to bee hive,while some other part handles flying ...

my none asm creations
https://masm32.com/board/index.php?topic=6937.msg74303#msg74303
I am an Invoker
"An Invoker is a mage who specializes in the manipulation of raw and elemental energies."
Like SIMD coding

LiaoMi

Quote from: K_F on November 12, 2019, 06:44:36 AM
Having looked at/read up on AI/neural networks for a number of years, I've come to a simple conclusion.

There are infinite ways to implement AI, which one is best on average is currently hard to determine and requires a lot of 'playtime' to mould into the particular application.

AI to date will be application specific but always prone to stuffing it up big time, so when I see a lot of hype how wonderful AI is I  :rofl:

Similar to psychology or HR department trying to 'pigeon hole' you with stupid tests...
The Brain has approx 100 billion neurons, each with up to hundreds of interconnections... and there are 7 billion people in the world.
Each one of these brains/people are different, and you want to pigeon hole them... :rofl: :rofl: :rolleyes:

But it's fun playing with the 'brain'.  :biggrin:

Trivial Artificial Neural Network in x64 Assembly Language
https://syprog.blogspot.com/2012/03/trivial-artificial-neural-network-in.html

Hi K_F,

:biggrin: :thumbsup: you're right, but if you use it for a specific purpose, not as globally as imitation of the brain, then this is an interesting field for programming.